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Abstract 

Because of communication limits, planetary rovers must op- 
erate autonomously during consequent durations. The abil- 
ity to plan under uncertainty is one of the main components 
of autonomy. Previous approaches to planning under uncer- 
tainty in NASA applications are not able to address the chal- 
lenges of hture missions, because of several apparent lim- 
its. On another side, decision theory provides a solid princi- 
pled framework for reasoning about uncertainty and rewards. 
Unfortunately, there are several obstacles to a direct appli- 
cation of decision-theoretic techniques to the rover domain. 
This paper focuses on the issues of structure and concurrency, 
and continuous state variables. We describes two techniques 
currently under development that address specifically these 
issues and allow scaling-up decision theoretic solution tech- 
niques io pianetary rover planning problems involving a small 
number of goals. 

Introduction 
There are many problems inherent in direct human con- 
trol of remote devices such as planet exploratory rovers and 
satellites: (i) Communication takes significant time. For in- 
stance, the minimum delay for communicating with a rover 
on the surface of Mars is roughly 20 minutes, making teleop- 
eration very hazardous; (ii) There may be obstacles block- 
ing the communication between Earth and the device. For 
instance, the rover may be on the wrong side of the planet; 
(iii) The Deep Space Network is the only way to commu- 
nicate with these devices, and it is highly oversubscribed. 
Therefore, remote rovers and satellites must be able to op- 
erate autonomously over substantial periods of time. The 
Mars Exploration Rovers (MER), for example, are designed 
to communicate with the ground only twice per Martian day 
and must operate autonomously the rest of the time. 

Moreover, the surfaces of planets are very uncertain envi- 
ronments. In the case of Mars, there is uncertainty about the 
terrain, the meteoro!ogical conditions, arid the state of the 
rover itself (position, battery charge, solar panels, compo- 
nent wear, etc.), resulting in a great deal of uncertainty in the 
duration, energy consumption, and outcome of the rover's 
actions (Bresina et al. 2002). This may have a serious im- 
pact on missions. It has been estimated that the 1997 Mars 
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Pathfinder rover spent between 40% and 75% of its time do- 
ing nothing because plans did not execute as expected. 

The need for autonomy and robustness in the face of un- 
certainty will grow as rovers become more capable and as 
missions explore more distant planets. The MER rovers 
require an average of 3 days to visit a single rock. How- 
ever, with recent progress in areas such as automatic instru- 
ment placement (Pedersen et al. 2003), multiple rock vis- 
its in a single communication cycle will be possible in fu- 
ture missions.' When this happens, it is probable that the 
expectations of space scientists will increase dramatically 
and that rovers will end up highly oversubscribed. More- 
over, planning for Europa and Titan exploration will require 
reasoning over much longer time frames, in more uncer- 

MER will probably have a very low probability of success 
in such a context, so that the robot would spend almost all 
its time waiting for new orders from mission control. More- 
over, planning for telescopes such as SOFIA or SIRTF also 
demonstrates a need for planning under uncertainty for large 
sets of tasks. 

Planning systems that have been developed for plane- 
tary rovers and other NASA applications typically use a 
deterministic model of the environment and action effects 
(Muscettola et al. 1998; Jbnsson et al. 2000; Estlin et al. 
2002). Given a pre-specified set of goals, they produce a de- 
terministic sequence of actions that achieves the goals under 
nominal conditions. They do not model the uncertainty in 
the domain, but instead rely on replanning to handle unex- 
pected events. This straightforward approach presents sev- 
eral drawbacks: 
The tradeoff of the value and risk of goals: Greedily 

achieving the highest priority goal can be a very poor 
strategy. For instance, a rover might try single-mindedly 
to get to a goal that is in fact unreachable, while neglect- 
ing other goals that are slightly iess valuable but much 
easier to reach. A fine trade-off between the value of a 
goal and the likelihood of achieving it is necessary to act 
opportunistically. 

The choice of branch timdpoint: Waiting for failure to 
change plans can also be very inefficient, since failure 
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'This capability will be demonstrated during field tests at 
NASA Ames Research Center in Fall 2004. 



time can be too late to respond intelligently to the new sit- 
uation. A system must consider changing its plans when it 
can predict a possible failure. For instance, a rover should 
change its route when it perceives a major obstacle instead 
of waiting until it actually reaches the obstacle. 

The problem of set-up actions: The prototypical exam- 
ple of this problem is identifying the benefit of putting a 
spare tire in the trunk before going on a car trip. Taking 
the spare tire has no benefit on the nominal plan; however, 
it will prove very useful if we have an unexpected flat tire. 
In the context of Mars rovers, this problem appears when 
choosing waypoints and preparing instruments. One may 
prefer a waypoint not directly on the path to the nomi- 
nal goal because alternative goals are more easily reached 
from this waypoint. 

These weaknesses may not have a big impact on current 
Missions such as MER. However, they will become critical 
as the missions' complexity, duration, and intervals between 
communication episodes grow.* 

Decision theory (DT) is a principled framework for rea- 
soning about uncertainty, rewards, and costs (Blythe 1999; 
Boutillier, Dean, & Hanks 1999). DT avoids the three pit- 
falls of re-planning and JIC approaches: (i) it makes optimal 
tradeoffs between the value of goals and plans, and the risk 
associated with them; (ii) it selects optimal branch  point^;^ 
(iii) it captures the necessity of performing set-up actions 
each time there is benefit in doing so. 

Theb NASA Ames Research Center (ARC) Limited Con- 
tingency Planning (LCP) project-demonstrated in several 
rover field tests (Pedersen et al. 2003)-attempted to ad- 
dress the previous three shortcomings (Dearden et al. 2003). 
It proposed several heuristics for selecting branch points and 
goals using decision theoretic tools. The LCP project did not 
formalize the whole problem of planning for Mars rovers 
in the DT framework, but it identified three challenges to a 
direct use of optimal algorithms such as dynamic program- 
ming (DP): 

1. Structure and concurrency: Models of Mars rovers are ex- 
pressed in high-level propositional representations that al- 
low concurrent execution of several actions. The com- 

Just-In-Case (JIC) scheduling (Drummond, Bresina, & Swan- 
son 1994) was used for automatic telescope scheduling. Although 
it is  not an approach based on re-planning, it falls in the same 
paradigm: first it uses a deterministic, myopic model to generate an 
initial plan; then it adds branches in the most likely failure points. 
This is equivalent to waiting for failure before changing plans. The 
success of JIC scheduling may be explained by some characteris- 
tics of the domain of observation scheduling (notably, the fact that 
the failure to complete a planned observation may easily be com- 
pensated by adding a new observation to the schedule). However, 
for the reasons exposed above, this heuristic does not perform as 
well in the more complex domain of rover activity planning. 

'DT is most often used to search for an optimal policy, that is, 
a universal plan with one "branch" for each possible situation that 
could be encountered at execution. However, it is also possible 
to use a decision theoretic approach to find optimal plans of other 
types, such as conformant plans (Hyafil & Bacchus 2003) and k- 
contingency plans (Meuleau & Smith 2003). 

plexity of the planning problem growth exponentially 
with the size of these models. 

2. The presence of multiple continuous state variables, such 
as time, energy, position, temperature, and storage avail- 
able. These variables make the search space (uncount- 
ably) infinite; 

3. A large number of possible goals: the complexity of the 
problem grows exponentially with the number of goals; 

These difficulties prohibit the use of existing approaches for 
finding optimal or near-optimal solutions to problems in- 
volving uncertainty faced at NASA. 

In this paper, we quickly survey two research directions 
currently under development at NASA ARC to tackle the 
first two issues above, and make the decision-theoretic tech- 
niques scalable to planetary rovers problems involving a 
small number of goals. These results will be published in 
more details in forthcoming papers. 

Structure and Concurency 
The first obstacle toward applying a full decision theoretic 
approach to problems such as Mars rovers is their struc- 
tured and concurrent nature. These problems can be ade- 
quately modeled using the complex representation of clas- 
sical AI planning including propositional, first-order, re- 
lational and object-oriented representations (Jonsson et al. 
2000; Bresina et al. 2002). The main issue in using DP 
with structured representations is scalability: DP manipu- 
lates fully grounded Markov states, which are conjunctions 
of fluents, propositions or predicates. Thus the number 
of states grows exponentially with the number of fluents, 
propositions or predicates, and so does the complexity of 
DP. This fact is well known and several approaches have 
been developed to exploit representations of structure in de- 
cision theoretic models (Boutillier, Dean, & Hanks 1999; 
Boutilier, Dearden, & Goldszmidt 2000; Hoey et al. 1999). 
Most of them rely on the idea of (approximate) model mini- 
mization (or state aggregation) (Dean & Givan 1997): they 
avoid redundant computation by manipulating sets of states 
that produce similar effects, compactly represented in the 
domain language, instead of individual states. 

In addition, rover and spacecraft models often allow con- 
current execution of several activities. For instance, the 
rover can warm up an instrument while driving to a loca- 
tion. A number of classical AI planning approaches support 
concurrent actions. Most of them assume in simple model of 
concurrency where several actions can be performed simul- 
taneously, but all actions have the same duration of one unit 
of time. More complex models allow concurrent execution 
of actions with different duration. The EUROPA planner 
developed at NASA ARC and currently used for rover plan- 
ning is a constraint-based planner allowing complex tempo- 
ral constraints and concurrency between activities (Jbnsson 
et al. 2000). However, it assumes a deterministic model of 
the environment. Although our long term goal is to be able 
to introduce non-determinism in the rich models that allow 
concurrent actions with different durations, the research de- 
scribed here focuses on the simple models where all actions 
have the same durations. 



The most influential algorithm in the classical AI plan- 
ning paradigm for concurrent planning is probably Blum and 
Furst’s GraphPlan (GP) (Blum & Furst 1997). This algo- 
rithm obtained tremendous success and inspired many ex- 
tension. It works in two stages: 
Plan graph construction: The (incremental) plan graph 

(Smith & Weld 1998) is a bi-partite graph whose nodes 
are either fluents that can possibly become true at some 
time; or actions that can possibly be performed at some 
point. In short, it represents all the fluents and actions 
that are “reachable” at some point in time, given the ini- 
tial conditions and the domain model. Causality links be- 
tween fluents and actions are represented by the edges 
of the graph: each fluent is linked to every action that 
consumes it (that is, for which it is a precondition), and 
each action is linked to every fluent that it produces. The 
presence of two fluents in the plan graph indicates that 
they are both reachable, but it does not mean that they are 
both reachable at the same time (or even in the same run). 
The plan graph also features binary exclusion constraints 
(“mutexes”) between pairs of actions and fluents. A mu- 
tex between two fluents indicates that they cannot both 
be true at the same time, and a mutex between two ac- 
tions shows that they cannot be performed concurrently. 
Because they are only binary relations, mutexes represent 
only a partial reachability analysis. For instance, three 
fluents may be unreachable at the same time while there 
is no (binary) mutex relation between any two of them. 
In counterpart, the plan graph construction is polynomial 
in the size of the problem, while a complete reachability 
analysis would be exponential (because it requires enu- 
merating all possible plans). 

Goal regression: The next stage is planning itself: given 
a goal as a set of fluents (sub-goals), we regress this goal 
through the plan graph. That is, we enumerate all the pos- 
sible ways to evolve from this set of sub-goals to the ini- 
tial conditions by applying actions-including concurrent 
actions-backwards from the sub-goals until a feasible 
solution has been found. Although this search is poten- 
tially exponential, the mutex information allows substan- 
tial pruning. For instance, we can cease to regress a set of 
sub-goals as soon as we recognize a mutex between two 
of them. That saves the time that goal regression would 
take to discover there is no way to satisfy this set of goals. 
The search stops at the first feasible plan found. 

This combination of a partial reachability analysis guiding 
a complete goal regression has proved very efficient and 
GraphPlan remains one of the most efficient planning algo- 
rithms for concurrent planning. 

In a classical ET approach, we do m t  want to find n 
feasible plan, but the best feasible plan (in terms of ex- 
pected utility), so the search must continue until all plans 
have been considered. Most algorithms use Bellman’s opti- 
mality principle to avoid enumerating the complete policy- 
space: As showed in (Boutillier, Brafman, & Geib 1998), 
partial reachability information as computed by GP may also 

40ne exception is the so-called policy-search approach. 

be used to prune the DP search space in a fully sequential 
planning framework (without concurrency). Pushing this 
idea further, we have developed a PlanGraph Dynamic Pro- 
gramming (PGDP) algorithm that uses a stochastic STRIPS 
(Boutillier, Dean, & Hanks 1999) representation of the do- 
main and combines three principles to accelerate the search 
for an optimal plan: (i) Bellman’s optimality principle, as 
in any instance of DP; (ii) model minimization to accelerate 
DP; @) a p d a !  reachability analysis, in the form of mutex 
relations between pairs of fluents, which is characteristic of 
the GP algorithm. Moreover, it can handle a simple model 
of concurrency. That is, it can output a plan with concurrent 
activities if this is an optimal plan. 

PGDP follows the same scheme as the original GP algo- 
rithm. The first stage, plan-graph construction, is carried out 
in exactly in the same way. The second stage, goal regres- 
sion, is replaced by a process of back-propagation of utility 
tables. This process plays a similar role, enumerating all 
plans that can lead to the goal, but does not stop at the first 
feasible solution found and continues until all plans in all 
reachable states have (implicitly) been considered. The ba- 
sic entities manipulated are utility tables, defined by: 
0 A representation of the expected reward that can be ob- 

tained under some policy. In simple cases, this is just a 
real number. In a domain featuring continuous variables, 
it can be a piecewise constant or linear function of the 
continuous variables, as described in the next section. 

0 A condition, that is a list of fluents that must hold to obtain 
the utility encoded. To accelerate dominance tests (see 
below), we maintain pointers in both directions between 
utility tables and the fluents in their conditions: each flu- 
ent node in the plan graph contains a list of pointers to 
the tables having this fluent as condition, and each table 
points to the fluent nodes in its condition list. 

A table indicates that it is possible to get the reward encoded 
in its value function if all the fluents in its condition are true. 

PGDP is initialized by creating a table for each goal of 
the planning problem. These tables are then backed up in an 
asynchronous manner, until a steady state is obtained. The 
basic operation of table back-up uses two principles: 
Logical inference: one or several sub-goals in the condi- 
tion list of the table are regressed through an action or a 
set of actions. A new table is created where the regressed 
sub-goals have been replaced by the action preconditions. 
Mutual exclusion information is used at this level to filter 
out all tables with mutex fluents in their condition. 

DP back-up: the utility encoded in the newly created ta- 
ble is obtained by composing the immediate effect (re- 
source consumption, reward) of the action, and the long 
term utiiity encoded in the parent table, as iii a c!assica! 
DP back-up. 

The algorithm also features a mechanism of table merging: 
When a table is backed up, the newly created table is com- 
pared with existing tables to ensure that dominated tables 
are discarded and only a minimum set is kept. This opera- 
tion is accelerated by using the system of pointers between 
fluent-nodes of the plangraph and utility tables. This step 



Problem 

SepO3 
SepO3 mod 1 
SepO3 mod 2 

random3-1 
random3-2 
randod-3 

random5-1 
random5-2 
randod-3 

# locations 

5 
5 
5 

7 
8 
6 

17 
26 
26 

# paths 

4 
6 
7 

10 
12 
8 

36 
74 
64 

# goals 

3 
3 
3 

3 
3 
3 

5 
5 
5 

# plan 
graph nodes 

80 
84 
86 

120 
132 
104 

200 
3 12 
292 

# plan 
graph levels 

10 
10 
10 

9 
9 
10 

10 
12 
11 

plan graph 
construction 

0.06s 
0.07s 
0.08s 

0.16s 
0.19s 
0.14s 

0.92s 
3.56s 
2.90s 

utility tables 
back-prop. 

0.05s 
0.13s 
0.31s 

0.40s 
0.44s 
0.30s 

20.12s 
41.62s 
37.52s 

Table 1: PGDP simulation results. SepO3 is the problem used during the LCP field tests of Fall 2003. Other problem instances 
where randomly generated. 

is fundamental: it is where Bellman’s optimality principle 
is used to prune the search. Each time that we discard a 
dominated table, we abandon complete regions of the search 
space that we know do not contain an optimal policy. 

PGDP has been implemented and tested using a real 
model of the K9 rover (the model used for LCP field tests of 
Fall 2003).5 Table 1 presents preliminary complexity results 
obtained with different problem instances in this domain. It 
shows that PGDP produces optimal solutions to problems 
involving three scientific objectives in less than one second, 
and five objectives in less than one minute. Moreover, the 
smallest of these problems cannot be solved in fewer than a 
few hours if we disable either the partial reachability analy- 
sis or the ability to use Bellman’s optimality principle. This 
indicates that the algorithm is taking advantage of both prin- 
ciples. PGDP is also used as a heuristic to recommend goals, 
branch points and branch conditions to the incremental con- 
tingency planner developed in the LCP project (Dearden er 
al. 2003). 

Continuous Variables 
A characteristic of many of NASA application domains is 
the existence of continuous state variables such as time, 
battery levels, location, and available memory. Most of 
these represent resources that constrain the planning prob- 
lem. Moreover, most of the uncertainty in the domain results 
from the effect of actions on these variables. In the Mars 
rover domain, the biggest sources of uncertainty are the du- 
ration and energy consumption of actions and the storage 
space that pictures will require after compression. In con- 
trast, the control framework is not completely continuous 
because decisions are made at discrete decision steps. For- 
mally, the problem is that of a discrete-step decision model, 
such as an MDP, with several continuous state variables. The 
continuous variables make the state space continuously infi- 
nite and prevent a direct use of classical solution techniques. 

Figure 1 shows the optimal value from the initial state of 

’In this preliminary implementation, we assume deterministic 
action consumptions and attach to each utility table a piecewise 
constant value function, as explained in the next section. 

a typical Mars rover problem as a function of two continu- 
ous variables: the time and energy remaining (Bresina et al. 
2002). The shape of this value function is characteristic of 
the rover domain, as well as other domains featuring a finite 
set of goals with positive utility and resource constraints. 
Such a value function features a set of humps and plateaus, 
each of them representing a region of the state space where 
a particular goal (or set of goals) can be reached. The sharp- 
ness of a hump or of the edges of a plateau reflects the un- 
certainty attached to the plan leading to this goal. Moreover, 
constraints on the minimal level of resource required to start 
some actions (Bresina et al. 2002) introduce abrupt cuts in 
the regions. This results in a landscape with vast regions 
where the expected reward is nearly constant. They corre- 
spond to regions of the state space where the optimal policy 
is the same, and the probability distribution on future trajec- 
tories induced by this policy is nearly constant. 

Our current research aims at developing algorithms able 
to exploit such structure by grouping together states belong- 
ing to the same plateau, while reserving a fine discretiza- 
tion for the regions of the state space where it is the most 
useful (such as the curved hump where there is more time 
and energy available). The algorithms we are developing 
are largely inspired by previous work on time-dependent 
MDPs (TDMDPs) (Boyan & Littman 2000), that features 
a single continuous variable representing time, to the multi- 
dimensional case. They implement the same basic idea as 
most structured DP algorithm, that is, model minimization. 
Here, it is based on a form of lazy discretization whose 
principle is the following: instead of naively imposing an 
arbitrary discretization of state variables and then deduc- 
ing a discretization of action effects from it, we do the in- 
verse. That is, we start by building a discrete model of ac- 
tion effects on continuous variables, possibly using the same 
grid size (in each dimension) as in the naive approach. In 
the planetary rover domain, this consists of discretizing the 
resource consumption of actions (which can easily handle 
dependencies between ddferent resources). Then, assum- 
ing that immediate rewards are piecewise constant functions 
of the continuous variables, a minimal discretization of the 
state space is computed at the same time as DP is performed 



Figure 1: Value function in (Bresina et al. 2002). 

(that is, backward from the planning horizon to the initial 
time). The value function at each step is represented by 
a piecewise constant function of the continuous variables, 
and the set of pieces over which it is defined is kept mini- 
mal to render only the significant differences between states, 
given the discrete model of action effects. States matching 
the same piece of value function: (i) have the same optimal 
pladpolicy, (ii) generate the same probability distribution 
on future history, in terms of actions performed, rewards re- 
ceived, and pieces of value functions traversed under this 
optimal policy (assuming the discrete model of action ef- 
fects). Given a fixed discretization step in each dimension, 
lazy discretization attains exactly the same accuracy as naive 
discretization, but it avoids all redundant computation. 

This approach has been tested on prototype rover prob- 
lems (Feng et al. 2004). Our implementation uses kd-tress 
(Friedman, Bentley, & Finkel 1977) to store piecewise con- 
stant value functions defined over rectangular partitions, a 
mechanism for merging adjacent pieces with same value, 
and we are currently adding smart operators to limit the 
number of pieces created at each DP back-up. Figure 1 was 
obtained in the order of a few minutes using this technique 
with the highest level of discretization (of action outcomes). 
It required in the order of one day of computation to solve 
the same problem using a Monte Carlo approach and a naive 
discretization, and the quality of the solution was lesser (see 
the figure in (Bresina et al. 2002)). 

Following (Boyan & Littman 2000), we further increased 
the model by allowing piecewise linear reward functions. 
For instance, to take into account the illumination of a rock, 
the value of a picture of it could vary (piecewise) linearly 
with the time of the day. Value functions are represented 
as a rectangular partition of the state space with a set of 

Figure 2: Value function of a variant of (Bresina et al. 2002) 
with piecewise linear rewards. 

linear functions attached to each (rectangular) piece. Tech- 
niques from POMDP theory are used to perform Bellman 
back-ups, resulting in a form of partitioned incremental 
pruning algorithm (Kaelbling, Littman, & Cassandra 1998; 
Cassandra, Littman, & Zhang 1997). See (Feng et al. 2004) 
for details. Figure 2 provides an example of value function 
obtained with this representation. 

These experimental results were obtained using toy prob- 
lems, and not the real model used for testing PGDP. As ex- 
plained above, the real problems have a complex structure 
involving both its discrete and continuous state variables. 
To address these problems, our future work will consist of 
integrating the techniques presented in this section with the 
PGDP algorithm presented in the previous section. In a pre- 
liminary implementation, a piecewise constant representa- 
tion of the value function defined over the whole continuous 
variables space may be attached to each utility table, instead 
of the single scalar value. However, it is likely that any of 
these value functions share structure. In the extreme case, 
two discrete states may have identical value functions, in 
which case we would like to combine them. In other cases 
only a subset of the continuous state may match, and we 
may be able to interleave splits on discrete state with splits 
on continuous state in the kd-tree to capture the structure in 
mixed models efficiently. 

Conclusions 
The techniques described in this paper make it possible to 
compute optimal solutions to real instances of Mars rovers 
problems involving a small number of goals. The solutions 
proposed here fail when the number of goals to be attained 
increases, because the underlying MDP is exponential in the 
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number of goals. Therefore, there is no other alternative 
than heuristic and approximate approaches to solve prob- 
l e m  involving a few tens of goals. We are currently ex- 
ploring heuristic approaches using goal-based hierarchical 
models as a solution to the large number of possible goals 
that a real mission scenario may contain. 
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